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INTRODUCTION

Understanding and forecasting how various drivers
and stressors impact the structure and function of a
given ecosystem depends on the degree to which its
dynamics are predictable. Several decades ago, eco -
logists began to focus on the identification and explo-
ration of nonlinear behavior (May 1974, 1976, May &
Oster 1976, Schaffer & Kot 1985); recently, that re -
search has centered in marine systems (e.g. Sugihara
et al. 2011, Liu et al. 2012, Deyle et al. 2013, Glaser et
al. 2014, Ye et al. 2015). There are both non linear and

linear methods for forecasting dynamics, but these
methods diverge significantly with modeling struc-
ture. Linear systems behave additively: they are
equal to the sum of their parts and can therefore be
disassembled, each part studied independently, and
overall system behavior can be understood by re -
assembling those parts (Finlayson 1991, Deyle &
Sugi hara 2011). Nonlinear systems are non-additive
and ‘state dependent’ (e.g. Deyle et al. 2013) and thus
cannot be studied through disaggregation (Deyle &
Sugihara 2011, Glaser et al. 2011, Sugihara et al.
2012). System variables and variability cannot be in-
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ABSTRACT: Nonlinear dynamics have been widely demonstrated in natural systems. In marine
fisheries ecosystems, such dynamics have primarily been associated with exploited species, sug-
gesting an anthropogenic stressor may explain their prevalence. However, this earlier work com-
pared co-occurring exploited and unexploited species, as opposed to analyzing the same species
before and after significant harvesting pressure. The former does not control for either differences
between species or the reality of indirect and long-lasting fishing impacts. Here, nonlinear
dynamics were investigated for the same species before and after significant changes in the mag-
nitude of harvesting. We found nonlinear signatures prevalent prior to heavy industrial exploita-
tion, and also found that these dynamics were highly deterministic. This demonstrates that non-
linearity existed in a complex marine system prior to extensive human influence and suggests
such behavior may be an innate property of these populations. Results also show a reduction in
deterministic dynamics post industrialization, suggesting that fishing can undermine the dynam-
ics and resilience of marine populations and render fisheries model output less predictable for
management.
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vestigated in isolation because they depend on the
state of the system. Further, future behavior is contin-
gent on the current state and less on defined and con-
sistent relationships between variables, as these can
change depending on conditions.

Both linear and nonlinear sources of variability are
observed in nature, and research suggests that non-
linearity and chaos are omnipresent (e.g. Schaffer &
Kot 1985, Dublin et al. 1990, Pascual & Ellner 2000).
In marine systems, nonlinearity has been found in a
suite of biological variables (Hsieh et al. 2005) in -
cluding recruitment (Dixon et al. 1999), as well as en-
vironmental forcing (Deyle et al. 2013), species inter-
actions and population dynamics (Benincà et al. 2008,
Sugihara et al. 2011, Liu et al. 2012, 2014), stock
 dynamics (Glaser et al. 2011, 2014, Ye et al. 2015),
density- dependence (Royer & Fromentin 2006), and
plankton communities (Scheffer et al. 2003). More-
over, integrated social−ecological systems, which de-
scribe the majority of the oceans today, exhibit a vari-
ety of possible nonlinear dynamics, including chaos
(Rosser 2001). Overall, these findings suggest nonlin-
earity is inherent. As Sugihara (2010) argues, nature
may be nonlinear.

If it is indeed nonlinear, the human enterprise may
be making nature even more so. Nonlinearity ap -
pears to be especially prevalent in exploited species,
signifying that anthropogenic impacts, harvesting in
particular, play a key role in the emergence of non-
linear signatures (Hsieh et al. 2005, Anderson et al.
2008, Sugihara et al. 2011). Anderson et al. (2008)
concluded that human-induced alteration of demo-
graphic parameters in heavily exploited species
caused nonlinear signals, and therefore increasingly
unstable population dynamics. Glaser et al. (2014)
found that exploited fishes were more likely to ex -
hibit nonlinear dynamics than non-target ones. They
suggested this was because coupling with human
systems altered natural variability. Induced nonlin-
earity could force systems to be less predictable
when using conventional models which are often
unable to detect and explore nonlinear signals and
more likely to experience rapid and unexpected re -
gime shifts and other forms of catastrophic change
(Mullon et al. 2005). An increase in nonlinearity
could therefore be a troubling signal of anthro-
pogenic influence. Consequently, identifying nonlin-
ear signals could aid in distinguishing natural vari-
ability from that induced by overfishing, perhaps
offering a warning sign of system vulnerability. Yet
this conflicts with previously detailed research de -
monstrating that nonlinear patterns are innate and
not the result of human impacts (e.g. Dixon et al.

1999, Pascual & Ellner 2000, Scheffer et al. 2003,
Benincà et al. 2008, Sugihara 2010).

Given these conflicting results, how do we inter-
pret nonlinear signals? If they are being increasingly
identified in natural systems, what do they mean for
our evolving knowledge of ecosystem dynamics?
Moreover, predictability in a time series suggests de -
terministic structure in its variability and is a critical
property if observations are to be used to test
hypotheses, build models, or forecast future condi-
tions. Identifying and assessing the predictability
and therefore determinism of nonlinear signals is
therefore key for science, as well as for management.
In either case, nonlinearity can be difficult to identify
and assess using traditional methods that focus on
linear dynamics alone, complicating predictions and
management.

Identifying nonlinearity and determining whether
it is innate or a product of human influences requires
novel sources of data that isolate these differences.
Thus far, research identifying and exploring non -
linear behavior has relied solely on contemporary
data (e.g. Anderson et al. 2008) comparing different
exploited and unexploited species in the same system
(e.g. Glaser et al. 2014). These approaches did not
fully control for differences in life history characteris-
tics, leaving open the possibility that variation in non-
linearity may be driven by demographic differences.
In addition, species not targeted by fishing may still
be indirectly affected, for example via predator−prey
or competitive interactions with exploited species,
but also through non-directed fisheries mortality (by-
catch). A long-term view often demonstrates that hu-
man use has a legacy of ecosystem-wide effects be-
ginning well before the scope of contemporary data
sets (e.g. Pauly 1995, Jackson et al. 2001). Modern
data alone may not be sufficient to clarify nonlinear
behavior and its drivers, therefore missing a poten-
tially critical aspect of variability in natural systems.

Understanding how harvesting impacts catch dy -
namics requires analyzing information on the same
species before and after major increases in exploita-
tion. We applied empirical dynamic modeling (EDM;
Ye et al. 2015) to historical catch series for a marine
system of interest during a period before industrial-
ized fishing (1873−1920) and compared it with the
same analysis on analogous contemporary data
(1967− 2014). This is the first time that a spectrum of
dynamics, including both linear and nonlinear com-
ponents, has been explored for individual species in
the same ecosystem under dramatically different
exploitation regimes. If nonlinearity in fish popula-
tions is principally unrelated to human activities, we
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hypothesize that significant nonlinear signatures
existed before the onset of industrialization. Con-
versely, if nonlinearity in fish populations is mostly
induced by human harvesting, we would expect a
higher incidence after industrialized fishing began.

MATERIALS AND METHODS

The Bay of Fundy (BoF) is the northeastern exten-
sion of the Gulf of Maine, a semi-enclosed sea in the
Northwest Atlantic, bordered by the coastlines of
New Brunswick and Nova Scotia, Canada (Fig. 1).
The bay experiences the highest tides in the world,
as well as varied physical characteristics and circula-
tion patterns, resulting in a productive and dynamic
ecosystem (Percy 1996, Graham et al. 2002). The
Bay’s circulation patterns and tides cause strong mix-
ing of water masses and significant upwelling, sus-

taining abundant plankton communities and high
primary productivity (Percy 1996). Resulting produc-
tivity and environmental diversity support a range of
resident and migratory species at all life history
stages (Lotze & Milewski 2004).

We used a novel time series of catch statistics for
the BoF to compare the same species before and after
the onset of intense fishing pressure. The data are
the earliest continuous time series for this ecologi-
cally and economically important marine ecosystem.
In addition, while the BoF has been under human
influence of some kind for thousands of years (Lotze
& Milewski 2002), these time series cover a period
be fore a dramatic increase in fishing intensity
brought about by industrialization of the Canadian
fishing fleet in the early to mid-1900s. Industrializa-
tion increased fishing mortality to rates unprece-
dented in the history of the region. In their analysis,
Anderson et al. (2008) argued that one consequence
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Fig. 1. (a) Bay of Fundy, with the (b,c) spatial areas
used for analysis. (b) The 24 local areas for pre-indus-
trialized fishing. (c) Current Department of Fisheries
and Oceans (DFO) Maritime Statistical Districts
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of fishing is the induction of nonlinear responses in
fish populations via alterations in basic demographic
parameters (namely, the intrinsic growth rate or per
capital rate of population growth). In this system, we
expect such consequences to have occurred after
industrialization of the fishing fleet, in light of its
associated and extraordinary expansion of effort.

This period of pre-industrialized fishing is covered
by time series data from 1873−1920, and we compare
it with similar data for the contemporary period 1967−
2014. These intervals provided catch time series of
47 yr, which is an appropriate run length for the
analysis (Hsieh et al. 2008). For the historical period,
we digitized the Canadian Department of Marine
and Fisheries Reports and extracted catch statistics
therein. Spatially, the data included 11 Canadian
counties (Charlotte, St. John, Albert, Westmoreland,
Cumberland, Colchester, Hants, Kings, Anna polis,
Digby, and Yarmouth) and were reported by town, re -
sulting in hundreds of locations. These were aggre-
gated into 24 local areas (Fig. 1b) due to the volume
of data and some variability in by-town reporting
(Klein 2013) and to allow comparison with the mod-
ern data. Excluding time series with too many miss-
ing years resulted in 109 time series of ap propriate
length (average of 44 yr) and an average of 12 time
series for each of 9 fish species. For the contemporary
period, we analyzed catch data from 1967 to 2014.
These data were at the statistical district level (21 sta-
tistical districts total), a spatial resolution comparable
to that of the historical records (Fig. 1b,c). Drawing
upon subsets that include only complete series re -
sulted in 43 time series and an average of 11 time
series per fish species for analysis.

Due to their ecological and economic importance,
we focused on the following principal species for the
historical period: Atlantic cod Gadus morhua, had-
dock Melanogrammus aeglefinus, pollock Pollachius
virens, Atlantic salmon Salmo salar, American shad
Alosa sapidissima, smelt Osmerus mordax, Atlantic
herring Clupea harengus, and Atlantic mackerel
Scomber scombrus, as well as one species group,
gaspereau (a traditional grouping of the anadromous
alewife, A. pseudoharengus, and blueback herring,
A. aestivalis).

In the contemporary period, time series were avail-
able for some but not all of the species in the his torical
data (cod, haddock, pollock, and herring). Despite
their importance historically, shad, gas pe reau, and
smelt were no longer commercially landed by the
mid-1900s. They do not reappear in the contemporary
catch records until the late 1980s, and even then only
sporadically and with numerous years missing. The

contemporary mackerel time series also do not return
consistently until the 1980s and contained many miss-
ing years. Consequently, the time series for these 4
species were not comparably robust for further analy-
sis. Salmon were not landed commercially at all in the
contemporary statistics. This left 3 species of ground-
fishes plus herring as suitable for comparison of pre-
and post-industrialized fishing dynamics.

We used catch statistics, not abundance proxies, to
explore dynamics through time. As we are primarily
focused on the historical period, catch data are the
most consistent and reliable data available (Klein
2013). In addition, research on the historical sources
for these data indicate that availability, i.e. natural fish
population dynamics, drove catch statistics far more
than fishing effort or market demand during that time
(Klein 2013). Finally, L. Storch et al. (unpubl.) demon-
strated that estimating abundance through traditional
stock assessment methods can fail to conserve nonlin-
ear signals. For these reasons, catch data were deter-
mined to be the most robust for our goals here.

Prior to analysis, time series were first-differenced
(∆X = Xt − Xt − 1, where X is an observation in a time
series at time, t) to ensure stationarity and to reduce
autocorrelation (Sugihara & May 1990) and normal-
ized (mean = 0, SD = 1) to allow comparison of mean
absolute error across catch series that varied by
orders of magnitude. After this processing, we used
EDM, introduced in Sugihara & May (1990, as sim-
plex projection) and Sugihara (1994, as s-map model-
ing) and further expanded as EDM in Ye et al. (2015),
to explore both the historical and contemporary time
series. EDM identifies deterministic dynamics and
classifies them as linear or nonlinear by comparing
the out-of-sample predictive ability of 2 models, one
linear and one nonlinear. Details of the methodology
are given in Sugihara & May (1990), Sugihara (1994),
Hsieh et al. (2008), and Glaser et al. (2014). Model
performance was evaluated by improvement in pre-
diction skill via the Pearson correlation coefficient,
rho (ρ), between model prediction and observations.
We therefore consider ρ to be an indicator of how
predictable, and therefore how deterministic, the
data were, and we confirmed precision via mean
absolute error (MAE) between the observed and pre-
dicted values (∆MAE). We assigned a p-value to
model prediction skill using the Pearson correlation
between observed and predicted values. For those
time series that were significantly predictable, we
analyzed their nonlinearity by the difference in pre-
dictability achieved by linear and nonlinear models.
The significance of this difference was measured by
a randomization test (Hsieh & Ohman 2006) and
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Ebisuzaki tests (preserves variance and spectrum,
Ebisuzaki 1997). Thus, reported p-values herein de -
note the statistically significant improvement in pre-
diction of a nonlinear model over the linear model
using these tests (results consistently agreed across
both). Finally, ANOVAs and t-tests using RStudio
(RStudio Team 2015) and JMP® (1989−2007, Version
12. SAS Institute, Cary, NC) software established sig-
nificant differences between species and time peri-
ods. When reporting results of nonlinear analysis,
only those time series with significant levels of pre-
dictability were included.

Finally, we also assessed the complexity of dynam-
ics, represented by their dimensionality. The dimen-
sionality of a system is the number of variables
important in determining system dynamics. While
dimensionality itself is unknown, it is reflected in the

embedding dimensions needed to reconstruct the
system behavior (Whitney 1936). Therefore, the
embedding dimension provides an index of overall
system complexity, and previous research has noted
that changes in embedding may be further indicative
of anthropogenic influence (e.g. Glaser et al. 2014).

RESULTS

Findings are summarized in Tables 1 & 2. Initially,
we calculated baseline metrics for all species in both
time periods. First, we assessed the levels of deter-
minism in the dynamics. Either a linear or nonlinear
model provided statistically significant predictions
(p < 0.05) in almost 80% of historical time series (84
out of 109 time series), confirming that the data con-

241

Species                        Historical                                                        Contemporary
                      Time series   Predictable   Nonlinear      Average             Time series   Predictable    Nonlinear     Average 
                              (n)                 (%)               (%)                   ρ                           (n)                 (%)                 (%)                 ρ

Groundfish
Cod                        18                  83                 40                 0.40                         14                   33                   80                0.24
Haddock               14                  86                 83                 0.52                         10                   50                   60                0.46
Pollock                  15                  67                 50                 0.37                          9                    56                   20                0.35
Anadromous species
Gaspereau             7                   100                57                 0.46                         −                    −                    −                   −
Salmon                  13                  70                 67                 0.36                         −                    −                    −                   −
Shad                      11                  82                 89                 0.42                         −                    −                    −                   −
Smelt                      6                    67                100                0.45                         −                    −                    −                   −
Pelagic
Mackerel               5                    80                100                0.47                         −                    −                    −                   −
Herring                 20                  70                 50                 0.37                         11                   64                   71                0.36
Average                                      77                 64                 0.42                                               51                   58                0.30

Table 1. Summary of empirical dynamic modeling results for both historical and contemporary time series. Predictable values
are percentage of total time series, nonlinear values are percentage of predictable time series. ρ: Pearson correlation coefficient; 

−: not enough data

Species           No. of     Change in predictability                    Change in dynamics                           Embedding dimension
                       comp.           No     NP → P   P → NP                No       L → NL    NL −L    NP → L          No    Increasing  Decreasing
                       series        change                                            change                                                       change

Groundfish
Cod                 13 (4)       6 (46%)       0         7 (54%)            1 (25%)   3 (75%)         0              0                 0         2 (50%)       2 (50%)
Haddock         10 (5)       6 (60%)       0         4 (40%)            3 (60%)         0         2 (40%)         0                 0         4 (80%)       1 (20%)
Pollock             8 (2)        2 (25%)  2 (25%)   4 (50%)            2 (50%)         0              0         2 (50%)           0        2 (100%)           0
Pelagic
Herring            7 (5)        6 (86%)       0         1 (14%)            2 (40%)   3 (60%)         0              0           1 (20%)   2 (40%)       2 (40%)
All species     38 (18)     21 (55%)  2 (5%)   16 (42%)           8 (50%)   6 (38%)   2 (13%)   2 (13%)      1 (5%)   10 (55%)      5 (28%)

Table 2. Summary of assessing the change in predictability and dynamics for comparable time series between the historical and con-
temporary periods in the same location. No. of comparable series: total number of time series available in both periods (number pre-
dictable in both periods). Change in predictability: number (percentage) of time series that become either predictable or un -
predictable in the contemporary period. Change in dynamics: number (percentage) of time series that changed dynamic signal in
the contemporary period. NP: not predictable; P: predictable; L: linear dynamics; NL: nonlinear dynamics. Embedding dimension: 

number (percentage) where the embedding dimension changed in the contemporary period
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tained recoverable (deterministic and therefore pre-
dictable) temporal dynamics. Predictability was gen-
erally the same across the species we analyzed
(Fig. 2a, ANOVA, p = 0.38), although haddock Me -
lano grammus aeglefinus was marginally more pre-
dictable than pollock Pollachius virens (p = 0.029),
salmon Salmo salar (p = 0.031), or herring Clu pea
harengus (Student’s t-test, p = 0.024). Using a Bonfer-
roni corrected alpha level (0.005) to control for com-
parisons, these differences were not considered sig-
nificant. Second, nonlinear behavior was found in
70% of those time series with predictable dynamics
(darker colors, Fig. 2b).

Next, to better assess changes in predictability and
nonlinearity after the increase in exploitation, we
compared time series for cod Gadus morhua, had-
dock, pollock, and herring pre- and post-industrial-
ization of the fleet. Predictability in dynamics de -
clined for all species in the contemporary period (Fig.
3a), dropping to only 51% of collective time series
(greyscale bars, Fig. 3a), compared with close to 80%
during the historical period. The loss of predictability
was particularly strong for cod; only 33% of the con-
temporary cod time series were predictable. In addi-

tion, the average prediction skill for cod fell from ρ =
0.40 to 0.244.

Although there was a similar level of nonlinearity
through time for those with predictable dynamics
when averaged across all species (hatched gray bars,
Fig 3b), dynamics had significantly higher ρ values in
the past (Student’s t-test of ρ values, p = 0.0057). In
addition, results on the prevalence of nonlinearity
varied by species. Cod and herring had higher non-
linearity in the post-industrialized period, while had-
dock and pollock were lower (Fig. 3b). However, cod
(Student’s t-test, p = 0.0172) and haddock (p = 0.0011)
had significantly higher predictability in the pre-
industrial period, while predictability for pollock (p =
0.236) and herring (p = 0.472) did not change.

Comparing time series at each location (Table 2),
nearly half the time series were no longer predictable
in the contemporary period, while only 2 time series
became predictable in the contemporary catch data.
There were also 25 locations with a robust time series
in the past that lacked a comparable catch time series
in the present (i.e. they were no longer reported as
caught in the area or included too many missing
observations). Cod and herring gained nonlinearity

in the post-industrial period, whereas
haddock and pollock gained linear
dy namics There was no pattern
showing whether nonlinear or linear
dynamics were more likely to be lost
in the contemporary period. Embed-
ding dimension, the indicator of sys-
tem complexity (Glaser et al. 2014),
increased for both haddock and pol-
lock, and in half of the time series for
cod. We found no significant spatial
patterns among results.

Finally, predictability was higher
in time series with nonlinear dynam-
ics than those with linear dynamics
(t-test, p < 0.0001). For the historical
data, predictability was higher for
nonlinear than for linear series (ρ =
0.527 versus ρ = 0.384). This differ-
ence was conserved (although
smaller) for the contemporary data
(ρ = 0.435 and ρ = 0.373, respec-
tively). Indeed, looking within each
period, the difference between non-
linear and linear predictability was
statistically significant in the histori-
cal period (t-test, p < 0.0001), but not
in the contemporary time series
(t-test, p = 0.338).
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Fig. 2. Percentage of the historical time series that were (a) predictable  and (b)
nonlinear (darker shades) and linear (lighter shades) by species. Brown:
groundfish; green: anadromous species; blue: pelagics. Gray bars on far right: 

average across all species
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DISCUSSION

Given earlier research, we expected lower levels of
exploitation in pre-industrialized fisheries to coincide
with higher levels of recoverable (i.e. predictable)
dynamics and lower degrees of nonlinearity. Our
results confirm the first hypothesis, while contradict-
ing the second. The majority of the historical time
series were more predictable than contemporary
series, with high values for prediction skill (ρ), indica-
ting deterministic structure was more prevalent in
the historical data. However, nonlinear dynamics
also dominated the historical time series, and series
with nonlinear signals were significantly more pre-
dictable than linear signatures. Results demonstrate
that deterministic nonlinearity (as opposed to sto -
chas tic chaos, Sugihara 1994) existed in complex
marine systems prior to extensive human influence
and heavy exploitation. Moreover, the dynamics ex -
hibiting nonlinear signatures were highly determin-
istic, further suggesting that complex behavior can

be an innate property of fish populations, and ac -
cordingly, ecosystems. These findings contrast with
earlier work suggesting nonlinear dynamics result
from human influence.

However, whether or not nonlinearity increased or
decreased with fishing intensity depended on the
species analyzed. For haddock Melano grammus
aeglefinus and pollock Pollachius virens, predictabil-
ity declined post industrialization of the fishing fleet,
and there was a shift towards linear dynamics, in
addition to an increase in embedding dimension for
both species. Together, these findings indicate that,
in the contemporary period, haddock and pollock
may be more strongly influenced by purely stochas-
tic, but linear, processes. In contrast, Atlantic herring
Clupea harengus and cod Gadus morhua exhibited
an increase in nonlinearity post-exploitation and no
clear pattern in embedding dimension. Cod also saw
a marked decline in predictability and exhibited the
lowest percentage of time series with nonlinear
dynamics in the historical period as well. Thus, the
general pattern of altered nonlinearity was linked to
species differences.

These findings agree somewhat with previous
studies on the impact of harvesting on catch dynam-
ics. Fishing may alter dynamics or convolute signals
entirely, as argued in Glaser et al. (2014), and
changes in fishing selectivity can impact the dynamic
complexity of catch (Basson & Fogarty 1997).
Changes in embedding dimension (Table 2) and re -
sults for cod and herring may provide further sup-
portive examples of these effects, yet we speculate
results are not so straightforward, especially given
the prevalence of nonlinearity in the historical, and
less fished, time series. Moreover, the increase in
nonlinearity in cod and herring may result from dif-
fering mechanisms. Cod and herring have been
under significant human influence for centuries, but
herring, unlike cod, are not considered overfished
today. If herring catch dynamics are nonlinear, as
were the majority of the historical time series across
species, conservation of these signals may be another
indicator of stock health. This would make sense if
herring are more resilient to fishing pressure, and if
they recover more quickly (Hutchings 2000). In con-
trast, the declines in determinism and increases in
nonlinearity in the remaining time series for cod may
indicate consequences of fishing found in Anderson
et al. (2008). Cod remain overfished today, with bio-
mass levels currently at all-time lows (NEFSC 2014),
and they have the longest history of human exploita-
tion among the species here; they were already
heavily fished by the time the catch statistics we used
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Fig. 3. Percentage of time series in the historical (left, darker
bars) and the contemporary time series (right, lighter bars)
that (a) are predictable (solid colors), and (b) exhibit nonlin-
ear behavior of the predictable time series (hashed colors).
Color code as in Fig. 2. Gray bars on far right: average across 

all species
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were collected (Leavenworth 2008, Alexander et al.
2009). Further, reports of fishing impacts on cod
demographic parameters, i.e. those important in the
Anderson et al. (2008) study, date back to the 19th
century (Klein 2013).

It is important to recognize that our analysis did not
assess the importance of other impacts, either anthro-
pogenic or environmental, and we recognize there
are limits to the interpretation of catch time series as
reflecting properties of the biological system. Further
work is required to clarify the drivers that contribute
to nonlinear dynamics, how these may change in
response to both environmental and anthropogenic
stressors, and most importantly, the mechanisms that
drive the dynamics observed empirically. Therefore,
mechanistic modeling and analyses are needed to
fully explore what aspects of fishing, fishermen be -
havior, and environmental change may be at play.
Increased fishing effort is certainly the most signifi-
cant factor during the period analyzed here, and we
do note changes in embedding dimension, which
may be an indicator of coupling with fisheries sys-
tems (Basson & Fogarty 1997, Glaser et al. 2014).
However, recent warming and species biology have
been postulated to drive dynamics in the region at
the population level for some species (e.g. for cod:
Fogarty et al. 2008, Pershing et al. 2015), and they
remain likely additional critical influences. The his-
torical records are constrained for further exploration
of these influences via the analyses here, and addi-
tional approaches and data sources will be needed.

Overall, however, our results suggest that associat-
ing nonlinear signals with anthropogenic influence
alone may be simplistic. The historical catch was
overwhelmingly nonlinear in nature and more deter-
ministic. Indeed, the loss of deterministic structure
with higher exploitation rates is a significant finding
of this work. Almost 80% of the historical data were
predictable, but both the prevalence and strength
(ρ values) of predictability declined post-industrial-
ization, especially for haddock and precipitously for
cod. This change is irrespective of differences in life
history between the species. Predictability in a time
series suggests deterministic structure in its variabil-
ity and is a critical property if observations are to be
used to test hypotheses, build models, or forecast
future conditions. Here, a possible explanation for
this change is that anthropogenic pressure increased
the susceptibility of populations to stochastic forcing,
resulting in indeterminate variability dominating
previously deterministic dynamics.

Regardless of the mechanisms, these changes in
dynamics have the potential to undermine resilience

in the exploited stock, with implications for fisheries
management and the economics of fishing. Stock
assessments suffer when population trends become
less predictable over time, reducing stakeholders’
faith in the ability of agencies to manage the resource
effectively. Perceived risk may also inhibit capital
investment in fisheries innovation. Further, the loss
of a number of key historical fisheries in the contem-
porary time series was a critical change in the sys-
tem, suggesting that ecosystem functioning has
likely been altered through reduced biomass of a
number of populations, especially anadromous fish
(Klein 2013).

The loss of deterministic structure in the contempo-
rary system has further sobering implications, indica-
ting exploitation can disrupt marine populations in
ways beyond lowering stock abundance. We often
view fishermen as predators, acting as a source of
mortality for individual species in the system. Conse-
quently, fishing mortality is incorporated into fishery
models as a single, additive term (fishing mortality,
F). Historically and in some systems this may have
been appropriate, but our findings suggest it is not
always the case. Anthropogenic disruption can act on
the fundamental dy namics of the system, transcend-
ing impacts of other predators (see also Hsieh et al.
2006). If this is the case, fishing can no longer been
seen as affecting the ecosystem simply via a single
mortality rate. Rather, it is a dynamical factor with
the potential to change the entire equation. If this is
indeed a generality in fisheries, it will be critical to
account for in assessing ecosystems dynamics and
fisheries management, particularly in a changing
 climate.

There is increasing evidence for nonlinear dynam-
ics in contemporary ocean environments, yet this
work is the first to evaluate such dynamics for marine
species across eras of differing fishing pressure to
more fully comprehend the impact of exploitation.
Previous work connecting exploitation and nonlinear
signals compared co-occurring exploited and unex-
ploited species, but in so doing could not control for
differences among the species or indirect and long-
lasting effects of exploitation. The data analyzed
here provide a more rigorous test by investigating
species prior to intense exploitation and comparing
across very different levels of fishing pressure. The
dominance of nonlinearity in time series from the less
impacted historical system demonstrates that these
signals occur in systems less impacted by harvesting,
especially given evidence that catch more closely
reflected population dynamics in the past (Klein
2013). This highlights the importance of nonlinear
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signals in fish populations and for fishery manage-
ment as it is practiced today, even if stocks are con-
sidered healthy.

Identification of nonlinear signals in ecological and
environmental data across ecosystems will be critical
for furthering this research. Yet, identifying the driv-
ing mechanisms will be difficult if we limit analysis to
contemporary data. Historical records can add in -
valuable information to the exploration of coupled
human and natural systems, and particularly to our
awareness of nonlinear dynamics. Moreover, given
the current state of the world’s oceans, historical re -
cords may be the best — and perhaps only — source
for information about populations at lower levels of
anthropogenic pressure than those of today. Scien-
tific study of marine systems through time, i.e. mar-
ine historical ecology and environmental history, is a
robust and growing area of research, and long-term
data are increasingly available and applied (e.g.
Thurstan et al. 2015, Engelhard et al. 2016). This is a
rich area for future efforts.
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